
Software Design Patterns

What will we learn today?

 A quick refresher on OOP

- Classes/Objects, inheritance, polymorphism, example

 What is a software design pattern?

- Origins

- Why would you use them?

- How can you apply them?

 Types of patterns

- Singleton Pattern

- Null object pattern

- Composite pattern

 Summary

 Three exercises

 Questions?

Software Design Patterns

Classes/Objects, inheritance, polymorphism, example

A quick refresher on OOP

TEMPLATE

Software Design Patterns

Object

Lorem

Ipsum

Dolor

Sit

Amet

Animal

Name: String

Height: double

Weight: int

favFood: String

Speed: double

Animal: void

Move(int): void

eat: void

setName(String): void

Speed: double

getName: String

Classes and objects

 Class is a blueprint for an object

 Class defines object properties and behavior

 You create an instance of an object, not a class

 Objects can have states, defined by properties

 Objects can have behavior, defined by methods

Software Design Patterns

Animal

Name: String

Height: double

Weight: int

favFood: String

Speed: double

Animal: void

Move(int): void

eat: void

setName(String): void

Speed: double

getName: String

Inheritance

 A way to define common behavior and state in one

place while defining specific behavior elsewhere

 Classes inherit properties/methods from a superclass

 Common behavior and state in abstract classes, the

‘final’ class that uses it is the concrete implementation

Software Design Patterns

Animal

Name: String

Height: double

Weight: int

favFood: String

Speed: double

Animal: void

Move(int): void

eat: void

setName(String): void

Speed: double

getName: String

Inheritance

Software Design Patterns

Animal

Name: String

Height: double

Weight: int

favFood: String

Speed: double

Animal: void

Move(int): void

eat: void

setName(String): void

Speed: double

getName: String

Bird

Move(int): void

Dog

digHole: void

is a

is a

When to apply inheritance?

Ask the “is a“ question:

 Is a Dog an Animal? Yes

 Is a Bird an Animal? Yes

 Is a Laptop a Computer? Yes

 Is a Bus a Car? Yes

 Is an Apache Attack Helicopter a Politician? No

Use this to decide whether you can define common

properties like a dogs height or a laptops dimensions or

find situations where inheritance might not be so logical

Some situations are not as obvious as the given example

Software Design Patterns

Microwave

bark: void

urinate: void

eatHomework: void

Wrong!

Why use inheritance?

 Avoid duplicate code (efficiency)

 Changes to superclass instantly reflected in subclasses

(maintainability)

 Easier for yourself and other developers to understand

code (understandability)

Software Design Patterns

Polymorphism

Cast a subclass object in the form of a superclass

Allows you to work with objects in superclass form while

retaining some of their subclass properties and methods

Animal muttley = new Dog();

Animal garfield = new Cat();

Animal bob = new Flamingo();

Methods are executed from subclass, but only if they are

also in superclass

garfield.getSound();

> “Mew mew mew”

Software Design Patterns

Animals[] array

Dog Object

Cat Object

Flamingo Object

Quick Demo

 Making a superclass and giving it properties/methods

 Making a subclass and giving it properties/methods

Software Design Patterns

The what, why and how, history, examples and exercises

Design patterns

Software Design Patterns

What is a software design pattern?

 A template for solving a common design challenge

- A pattern has a name, intent/purpose, solution, etc.

- It describes common high-level structures in code,

beyond the level of the programming language

- Patterns are generic, but the exact “wording” of the

solution depends on the programming language

 Examples of software design challenges

- Representing a complex object (e.g. a web page)

- Handling different file formats (e.g. txt, doc, docx)

- Notifying objects of a change (e.g. resize window)

Software Design Patterns

Origins

 In architecture: “A Pattern Language” (1977)

- Written by architect Christopher Alexander

- Described patterns in building/construction

- Inspired others to describe patterns in other fields

 In software engineering: “Design Patterns” (1994)

- Written by four computer scientists (“Gang of four”)

- Provides a list of 23 common patterns in software

programming with examples in C++ and Smalltalk

- Highly influential in programming practice and in

subsequent programming language design

Why would you use them?

 How to write software that is reliable, maintainable, and easy to

understand?

- Use a modular design

- Do not repeat yourself

- Write clean and consistent code

 How to achieve this in practice?

- Design before you write (e.g. UML diagrams)

- Apply default solutions to recurring problems

- Leverage the power of the programming language (i.e.x. OOP)

Software Design Patterns

Software Design Patterns

Types of patterns

 Creational – Use a pattern to create objects

 Structural – Use composition / aggregation to obtain new functionality

 Behavioral – Govern how objects communicate with each other

Software Design Patterns

Singleton Pattern (Creational)

 The singleton pattern restricts the instantiation of a class to one object

 Ensure that one and the same object is used at all times

 Prevent creating an instance of the object the normal way

Singleton

- Instance:Singleton

- Singleton()

+ GetInstance():Singleton

Software Design Patterns

Null object pattern (Behavioral)

 Use a special object to represent empty/non-existence instead of ‘null’

 Create an abstract class that represents the object (no implementation)

- Create a concrete class that represents a valid object

- Create a concrete class that represents an invalid object (a “null object”)

 Return a null object whenever a result is undefined or non-existent

Software Design Patterns

Null object pattern (Behavioral)

Client AbstractObject

+ request()

+ someProperty: String

NullObject

+ request()

+ someProperty: String

RealObject

+ request()

+ someProperty: String

Uses

Do

nothing

Software Design Patterns

Composite pattern (Structural)

 The composite object allows you to treat a collection of objects the

same as one object.

 Used for a tree structure of objects where all leaf-nodes have at least

one operation to perform

 You define what a component should do and derive the composite and

leaf from that

Software Design Patterns

Composite pattern (Structural)

Leaf

+ operation()

Component

+ operation()

Composition

+ operation()

+ add()

+ remove

+ getChild()

0..*

child

parent

1

Software Design Patterns

Summary

 Design patterns are templates for solving common design challenges

 Patterns were first described by the “Gang of four” in 1994

 Consistent use of patterns makes your software easier to maintain,

more reliable and easier to understand

 Three types of patterns: Creational, structural and behavioral

Creating some patterns

Practice

Introduction

 Language of choice: Java

- Statically typed

- Native support for interfaces, static methods, null type

- Most commonly used in tutorials for design patterns

Software Design Patterns

Software Design Patterns

Exercise 1: Creating the Factory pattern (creational)

 In Factory pattern, we create object without exposing the creation logic

to the client and refer to newly created object using a common interface.

Software Design Patterns

Exercise 2: Creating the Observer pattern (behavioral)

 Observer pattern is used when there is one-to-many relationship

between objects such as if one object is modified, its dependent objects

are to be notified automatically.

Software Design Patterns

Exercise 3: Creating the Facade pattern (structural)

 Facade pattern hides the complexities of the system and provides an

interface to the client using which the client can access the system.

Questions?
Contact Joost Meijer at info@itility.nl

